Thickening the Trunk

The first quality of a good bonsai is a thick trunk with movement and mature bark. So what actually contributes to the growth of a tree trunk?

Two processes are involved. The first is the creation of new sapwood. Sapwood is the living wood towards the outside of a trunk which conducts water (Ennos, 2016). Sapwood formed in spring is called ‘earlywood’ and is optimized for water & nutrient transport to help the tree with its growth spurt. Latewood is designed for structural support and carbon storage.

Water and nutrients are conducted from the roots through xylem vessels. The mechanism by which they work is explained in xylem but for the purpose of this section it’s important to understand that the reason why trees add new xylem vessels is because as it adds biomass – new branches and leaves – more water is required. So – the more biomass is added in a given growing period – the more water is needed – the more xylem vessels are added to the trunk. Xylem vessels also become non-functional for reasons explained in embolisms, so trees need to replace them as well as adding to them due to new growth. 

New sapwood (with xylem vessels) is added around the previous sapwood, encircling the tree. How much of the girth of a tree increases each year is determined by the tree’s food supply (Trouet, 2020); this is a combination of the amount of rainfall and the energy from the sun during that year.

This studyref found that “low precipitation at the start or during the growing season was found to be a significant factor limiting radial growth” for a range of urban trees in the UK. According to Trouet, “alternating wet & dry years create wide and narrow rings respectively.” So low water levels lead to small rings and high water levels lead to large ones. The earlywood creates a larger ring than the latewood, since the xylem vessels are larger in earlywood (for water transport) and smaller in latewood (for structural strength) (Ennos, 2016).

What this means for bonsai is that watering your tree well is important while developing its trunk, whilst ensuring you have a well-drained growing medium to avoid creating anoxic conditions (lacking oxygen). If your medium is well-drained and you water thoroughly throughout the tree’s growing season (but particularly during earlywood development), you’ll boost your tree’s girth by creating wide ‘good times’ sapwood rings.

The other factor mentioned is energy from the sun. Energy from the sun is used by the tree in photosynthesis, which converts energy into a form that the tree can use to respire and grow. If there is more sun, more energy is available and the tree is able to create more xylem, buds, leaves and biomass. This isn’t a straightforward linear relationship however, as photosynthesis reaches a saturation point based on a number of limiting factors (more in the post about photosynthesis).

The key point here is that reducing the ability of the tree to capture and convert energy will affect its growth. If you reduce the foliage on your tree or cut it back in spring, you reduce its biomass, it can’t generate as much energy, and doesn’t need as much water, so doesn’t add as many xylem vessels as it would have nor as wide a ring of sapwood. This reduces the trunk thickening you can achieve in a given time period. 

It’s worth noting that the roots of a tree need to be capable of delivering the amount of water that its foliage and branches require. Optimising trunk thickness requires a dense canopy of leaves and branches, matched by roots capable of delivering the amount of water that they need. This is why many bonsai enthusiasts will start a tree off in the ground or in a large pot, allowing growth to drive the trunk size until it’s at the level required.

Attempting to restrict the roots and size of the tree too early (e.g. by putting it in a bonsai pot) will restrict trunk growth by reducing the water available to the tree and reducing the energy it can create by reducing its foliage.

Like people, trees are genetically programmed to have different maximum heights and lifespans. Some trees are slow-growing (such as Yew) and some are fast (such as Eucalyptus) so to an extent the amount of trunk thickening that is possible also depends on the species of tree.

Trees grow most vigorously when they are free from environmental stressors – such as drought, extreme cold, loss of leaves due to high winds, attack by insects or animals.  A stressed tree will grow a narrow ring. BUT stress in the form of wind can foster positive qualities in a trunk. Ennos (2016) says that trees exposed to high winds without a prevailing wind direction grow shorter, with thicker trunks & roots, and adjust their wood cells to spiral around the tree creating a twisting effect. It’s not just the trunk that is affected – apparently this results in smaller leaves and shoots as well. Get your bonsai a wind tunnel!

Another way to thicken a trunk is to grow a ground-level branch, as layers of xylem will be added around this branch as well as the truck, or to have a multi-stem tree, which operates on the same principle. You want to avoid having one too much above the ground though, as it might cause the dreaded reverse taper.

I mentioned two processes involved in secondary thickening – the second process is the effect of an increasing bark layer. In most cases this will be dwarfed by sapwood increases but nevertheless biomass is added as bark via the cork cambium, another secondary meristem on trees. Some trees which retain multiple periderms (layers of cork with their meristems) can develop very thick bark which does contribute to the overall trunk girth as well.