Tag Archives: Leaves

Defoliation

There are quite a few research papers about tree defoliation because this can be caused by insects, creating a problem for the forestry industry. Defoliation is used on deciduous trees in bonsai to completely regrow a deciduous tree’s leaves, resulting in ramification and smaller leaves. This isn’t a practice for conifers, or at least, not for most of them, as many conifers simply can’t regenerate very easily and the effect will be weakening of the tree and not ramification. Although I must note here that my 2022 summer watering disaster caused a small larch forest of mine to defoliate and it looked fantastic after the foliage regrew!

Complete defoliation is a pretty drastic practice from the tree’s perspective and a double whammy – as not only does the tree have to use its stored energy reserves to regrow its leaves, it doesn’t have any energy coming in until those leaves are regrown. Defoliation significantly reduces the total stored carbon in a tree, and there is a point at which mortality occurs – one study found that once stored carbohydrates were less than 1.5% of the usual level, this will kill the tree.ref

As described in this article about the effect of grazing animals, “Plants adjust to conditions of chronic defoliation and the associated reduction in whole-plant photosynthetic rates by altering resource allocation patterns and reducing relative growth rates.”ref Although the article is focused on grasses, which are a different branch of the Plantae family to trees, it says that “root elongation essentially ceases within 24 hours after removal of approximately 50% or more of the shoot system…[and there is]…a rapid reduction in nutrient absorption”. So basically by defoliating 50% or more the roots will stop growing and nutrient absorption will reduce. Interestingly, several studies reported that photosynthetic capability of the remaining leaves on defoliated plants actually increases – perhaps a result of the resource allocation pattern change mentioned above.

The effect of defoliation is to force a deciduous tree to use the stored energy it has built up in the growing season straight away, instead of leaving it for the next season. Because of this, the tree doesn’t have the energy reserves to grow a full set of leaves at the same size it would normally, so it compensates by growing smaller leaves. Since this technique uses up stored energy, there isn’t much left for other types of growth, so it’s not a technique you would use if you were trying to thicken a trunk or grow branches.

This studyref found that a 50% defoliation of prunus saplings reduced their growth rates for the following 5 years and brought forward bud burst for a similar period, while this oneref found that larch recovered well from defoliation, but pinus did not. This oneref said that partial and complete spring defoliation reduced first-year diameter, height, and volume growth of 4-year-old loblolly and slash pines.

This article says that “scientists found that growth was reduced in both half and entirely defoliated trees in the short and long-term…both half and entirely defoliated trees had less leaf area than control plants. Defoliated trees also allocated more carbon for storage than control trees with no defoliation.”ref This suggests that defoliation in some way teaches your tree to divert resources to storage instead of foliage, not just once but into the future. Which means you really don’t want to do this while you are still establishing the branch structure and ramification because these will slow.

Interesting, Harry Harrington reports that some species don’t respond to complete defoliation by growing smaller leaves, instead they grow a small number of large leavesref. So overall a complete defoliation may be an unnecessarily unpredictable and heavy-handed way to achieve leaf reduction. One could hypothesise that defoliation of a tree which follows a fixed growth pattern (read more in Extending Shoots) might result in a greater leaf reduction effect, because buds and nascent leaves are not sitting there waiting to burst, they need to be completely regrown. But one could also hypothesise that this type of tree might struggle to regrow any leaves at all, depending on the weather conditions.

There are less drastic options than removing the entire foliage of a tree all at once – you can remove half of it for example, or do it in stages, so that new leaves can grow before the remove the next batch. It seems like you should be able to achieve a similar effect with constant low-level leaf pruning throughout the growing season, combined with bud pinching at the start of the season. A more gradual approach would allow photosynthesis and energy generation to continue, without stopping root extension and nutrient uptake, while still regrowing leaves and increasing ramification. It may be however that the shock of something more drastic is what’s needed to reduce leaf size significantly because the resources to regrow are shared more widely. An experiment for someone?

The timing of defoliation is really important. The tree needs to have had enough time with its new leaves to generate good energy stores for the next season and enough time to regrow and harden its leaves against frost. Somewhere in the middle of the growing season allows for both of these to happenref.

Reducing leaf size

In bonsai a small leaf is preferred, because this give the impression of the proper scale of the tree. But how small do leaves need to be? Let’s take the beech tree out the back of my house. It’s about 25m tall, with a 75cm diameter trunk, and its leaves are 8-10cm long. If you were to actually scale this down to a generous bonsai size of 50cm tall, it would have a trunk of only 1.5cm and leaves of 2mm long!! Which is obviously ridiculous. But even if we can’t get a bonsai tree down to the precise scale of its full-sized siblings, we do want to reduce the leaf size to make the tree look more realistic.

The first thing to say, if it isn’t already obvious, is that you can’t shrink a tree’s leaves – they have to grow small in the first place, or be prevented from growing as large as they could.

Achieving the former is all about selecting a small-leaved variety of tree. Many species have small-leaved varieties which lend themselves much better to bonsai than their large-leaved siblings. Unfortunately if you are selecting a variety with small leaves (vs a species) you will need to use a vegetative form of reproduction to obtain your tree – a graft, a cutting or an air layer. I’ve had some success collecting seeds from small-leaved Japanese maples, which sometimes pass their diminutive leaves to their progeny.

If you happen to have the opportunity to analyse a prospective bonsai tree’s genome, you’ll prefer to choose haploid trees (with just one set of chromosomes) and avoid polyploid trees (with more than two sets of chromosomes) – as can be seen in this image of different ploidy ginkgos, the leaves are much larger for trees with more replicated genetic material. Unfortunately determining ploidy requires a sample of your tree, a flow cytometer and some lab skills most of us lack!

https://www.nature.com/articles/s41438-018-0055-9/figures/2

Achieving the latter (preventing the leaves from growing large) basically involves disrupting the leaves as they are growing to stunt them before they grow to their full size.

Ennos (2016) reports that ‘thigmomorphogenesis’ – mechanical perturbation by the wind, results in smaller leaves. This study on Ulmus americana seedlings found that total leaf size was reduced by 40% – but only when they were exposed to the highest level of ‘flexures’ (a proxy for wind).ref Another study which I can’t access behind a paywall is summarised as finding “in needle-shaped leaves the elongation of the leaves is inhibited”ref. Researchers think that mechanical perturbation of plants triggers the production of ethylene, and its cross-talk with auxin, both plant growth regulators. So putting your trees in a windy position may result in smaller leaves (and shorter internodes). But be aware this will also increase transpiration so they will need more water.

The other mode for leaf size reduction is to starve the tree of resources when it is making leaves, in one form or another. This leaves less energy available for leaf production leading to smaller leaves. Various forms of defoliation achieve this, such as:

  • partial or full foliage removal, forcing the tree to use up resources growing a new flush of leaves
  • bud pinching, which is personally the best way I’ve seen to reduce leaf size on deciduous trees
  • maintenance pruning – cutting off leaves when they exceed a certain size – so that new leaves are grown and only the ones below a certain size remain
  • note – the above should not be used on conifers

On conifers, pruning back the candles to a few needles at the base will apparently trigger another flush of budding, and due to depleted resources the needles will not grow as longref (since leaf size is apparently not very interesting commercially, there really is little research on how to achieve it).

Another technique is to deprive the tree of fertiliser until it has leafed out. I think this might weaken the plant over the long term but it’s apparently popular for Japanese maple enthusiasts (for their trees, not for them!)

Finally, it’s important to balance leaf size reduction techniques with the tree’s energy requirements because reduced leaf area will reduce photosynthesis.

Ramification of Branches and Foliage

After establishing trunk and branch structure, ramification (a fancy word for ‘branching’) of branches and foliage (as well as roots) is a key goal of bonsai. This makes a tree look older and more sophisticated, and gives the bonsai enthusiast options for continued development of the tree.

Ramification is created by branching the stems. Stem branching usually* requires buds, as a new bud creates a new stem. The pattern of stem branching for a particular species will depend on its ‘phyllotaxy’ (leaf morphology) and pattern of buds.

Usually in bonsai we don’t want more than two stems from the same location, the general guidance is to fork into two at any given junction. This is because strong growth of multiple branches at a junction leads to a bulging area on the trunk which bonsai judges don’t like. In the real world, many trees have reverse taper and bulging branch junctions though, so it’s your call. To avoid this situation, remove buds which are in places you don’t want by rubbing or cutting them off.

To improve ramification, you need to encourage as much budding as quickly as possible, then select the buds you want to develop. Pruning the growing tip is the main way to encourage budding, because pruning removes the apical bud (the dominant bud at the end of the stem), diverts resources into buds lower down the stem and sensitises those buds to respond to auxins and develop into shoots. In deciduous trees this should result in at least two buds generating from the stem instead of the one which was there. Another great way to create ramification on deciduous trees is through bud pinching – see Harry Harrington’s detailed explanation of how to do this. Bud pinching removes the entire primary meristem except for two outer leaves, this encourages the buds at those leaf axils to grow, along with two new buds at their bases.

Different species have differing abilities to respond to pruning, so try to get a sense by observing your tree of how well it will cope. Deciduous trees are designed for regeneration so in general they take pruning reasonably well, although if you take it too far they might send out suckers instead of new buds from the branches. With evergreen conifers you want to ensure there is some foliage and at least some buds remaining after you prune, otherwise it may not regenerate (unless it’s a thuja, or a yew, these guys are refoliating machines). I have cedrus seedlings in my collection and by cutting back the apical leader from not long after they germinated, and every year since, they have become extremely bushy and well-ramified (although, at the cost of developing a think trunk).

Gratuitous image of one of my cedar bonsai

Anything which stops or prevents tip extension will drive bud activation and ramification further back on the tree. In the case of conifers, the presence of flowers on the growth tips (as you see in juniper) has this effect as well, and can cause back budding. Lammas growth (a second flush in summer) can give you another round of ramification as long as you’ve pruned beforehand (otherwise it will just add to the existing stems).

Research has found that bud outgrowth is “controlled by plant hormones, including auxin, strigolactones, and cytokinins (CKs); nutrients (sugars, nitrogen, phosphates) and external cues”.ref In particular the sugar sucrose has been identified as a key driver for promoting bud outgrowth and accumulating cytokinins – this is generated by photosynthesis.

In one study on apple trees, foliar application of a synthetically produced cytokinin 6-benzylaminopurine (BA) was found to generate three times the lateral bud growth on currently growing shoots compared to controls (but not on old growth)ref and at the same time reduced the length of the main stem. BA was used to encourage better growth of bean sprouts in China before being bannedref and has been shown to increase the number of leaves (ramification!) on melaleuca alternifolia treesref (melaleuca is the source of tea tree oil), and on some conifersref. Could BA (also known as 6 BAP) be useful in bonsai? You can (like most things) buy this product in foil bags on ebay, but there is a product in the orchid world called Keiki paste which also contains 6 BAP – so maybe some judicious use of ‘crazy keiki cloning paste‘ might also help ramification and shoot development in your trees?ref You can also purchase BAP (as its also known) from vendors involved in hydroponics and suchlike as it’s used in in-vitro plant micropropagation.

If you baulk at paying £18 for 7ml of keiki paste, there is one other source of cytokinins which is a lot cheaper, more sustainable and clearer in its provenance – compost. This study found that compost created particularly from waste collected throughout springref contained 6 BAP. Frustratingly there weren’t any free to read articles analysing compost leachate for cytokinin content, but if it’s in solid compost it’s a fair assumption there are cytokinins in leachate as well. Which makes me feel a lot better about the £300 I recently spent on a Hotbin composter! Which incidentally, produces gallons of leachate, which can be diluted and added as a liquid fertiliser.

* I’ve recently read a study which states that “apical meristems can be surgically divided into at least six parts and these then become autonomous apical meristems.”ref What this suggests is that you could slice growing tips into 6 (or better, two since we don’t want more than two stems from a node) and they would become two stems instead of one! One to try next spring.

** By the way – it’s not auxins which cause apical dominance! Check out page 215 of this book, it’s nutritional status and phyllotaxy which determine the apical stem’s sensitivity to auxin which is present.