Tag Archives: Gymnosperms

Gymnosperm (Conifer) Budding

Gymnosperms relevant for bonsai include ginkgo and the Pinales order (Araucariaceae, Cephalotaxaceae, Cupressaceae, Pinaceae, Phyllocladaceae, Podocarpaceae, Sciadopityaceae & Taxaceae – this is explained in The kingdom Plantae and where trees fit in). Ginkgo is a special case described separately at the end of this post.

So what we’re interested in in bonsai is where lateral buds appear, and in particular whether they can develop adventitiously (or backbud). Angiosperms (flowering plants) are relatively easy to understand in terms of their lateral budding, as many species reliably produce a bud in each leaf axil (the axil is the place on the stem where the leaf is/was connected). In gymnosperms though, this is not as predictable and it’s not the case that each needle contains a bud – at least not in every species and not detectably. And looking at the different foliage forms below, you can see that different bud types must be involved to generate all these different leaf models.

https://cmg.extension.colostate.edu/Gardennotes/134.pdf

Many conifers have a terminal bud at the end of each long shoot/branch surrounded by a number of close lateral buds in what’s called a ‘whorl’. These include pines, spruce, fir, and the Auracaria family. The whorl in the picture is a Scot’s Pine, with a vegetative bud in the middle and reproductive buds around it. This will usually be the apical or strongest bud, receiving the majority of the sugars from photosynthesis.

https://joshfecteau.com/meet-the-pines-scotch-pine/#jp-carousel-8472

When the vegetative bud extends, it is called a ‘candle’ because it is a long thin structure – which looks like a candle. Below you can see a Pinus Thunbergii (Japanese Black Pine). Some candles are extending and some have extended and formed cones from the lateral buds around the main bud. No branching will occur from reproductive buds as they terminate the shoot.

https://www.conifers.org/pi/pi/t/thunbergii02.jpg

Bonsai enthusiasts commonly prune the candles to maintain a short needle length, this has the effect of arresting the needle growth; it is also possible to completely remove the candle, to force bud break at the base of the candle which results in smaller and more buds. In pines there are usually short shoot buds at the base of the candle – these will produce needle clusters in the future but no stem elongation. Breaking or pruning the top of the candle will activate these buds, which is good for ramification. If you want to continue developing the structure of the tree, you need a long shoot with a terminal vegetative bud as this won’t fall off.

As well as the terminal buds, pines sometimes have buds on their lateral shoots, between the needles, as well as internodal buds, which appear along the stem and not just at the end. These usually appear at the axil of the individual leaves on a long shoot/stem (Dörken, 2012).

Other conifers such as those in the Cupressaceae family (Thuja, Juniperus, Cypress) do not have whorls or needles, they have scale-type leaves in ‘branchlets’ (and needle-like leaves when juvenile). You can see below some examples of these which show the lateral buds forming from inside the lateral leaves (the leaves on the sides of the shoots). Since these branchlets squeeze a lot more leaves in, they have more potential for budding than do individually-leaved species such as Abies (fir) and Picea (spruce).

https://craven.ces.ncsu.edu/2022/03/conifers-with-scale-like-leaves-what-makes-a-leaf/

However one key attribute of species in Cupressaceae like these scale-leaved ones above is that just like pines they do still have differentiated short shoots and long shoots (Dörken, 2012). The short shoots are the individual branchlets, which abscise as a unit after a few years (detach from the long shoot and fall off). At the base of this short shoot is another bud waiting to generate a new shoot once the branchlet falls off. So new foliage will come from the leaves on the branchlet while it is active, and then from where the branchlet was connected to the stem when the whole branchlet falls off.

Conifers with individual needles such as firs and spruce, and needle-leaved junipers, have buds at the base of each leaf, but tend to bud towards the end of the most recent growth. Last year we dug up a Christmas tree from our allotment and I pruned the ends of most of the branches because it was too wide to fit into the house. The effect of this has been to stimulate the subordinate branches to bud – but again this has only happened at the ends of the branches (see below). Something about firs & spruces keeps the active budding zone at the end of branches.

As well as understanding the budding pattern, a key question for bonsai afficionados is whether or not a particular tree will backbud. That is, will it be possible to increase ramification and foliage density by encouraging axillary or adventitious buds to form.

Gymnosperms were traditionally believed not to resprout, with research in the past finding that buds are not present in leaf axils of conifers. Despite that, there are quite a few gymnosperms species which do, including the following. Some of these “do not have distinct buds at all; they produce new growth from meristematic tissue hidden under the skin of the twig” (Thomas, 2018) – this is known as an epicormic bud. This may be a false distinction since the meristematic tissue may just be early buds which are not developed enough to be visible.

  • Some Abies (fir)ref including Abies nordmannianaref
  • Araucaria & Agatha species including including Hoop Pineref and Wollemi pine ref1, ref2
  • Cedrus (true cedar)ref
  • Cryptomeria japonica (Japanese cedar)
  • Ginkgo
  • Juniperusref
  • Larix (larch)ref
  • Metasequoia glyptostroboides (dawn redwood)
  • Pseudotsuga (Douglas fir)
  • Some Pinus (pines)ref – but pines are notorious for losing their ability to bud anywhere other than on the most recent 1-2 years old stems. Brent Walston at Evergreen Gardenworks says with Pinus thunbergii that as long as there is still a living needle on a stem, if you cut the stem above it, that will force a bud at the needle axil.ref This lines up with the idea that buds in pines are present under the leaf axil of long shoot leaves.
  • Taxus baccata (yew)
  • Sequoia sempervirens (coast redwood)
  • Sequoiadendron giganteum (giant redwood)
  • Taxodium distichum (swamp cypress – deciduous)ref
  • Thuja occidentalis (sometimes called White cedar)
  • Thujopsis dolabrata (a Japanese species similar to Thuja)

So actually there are quite a few!

Some studies have indicated that “cytokinin sprays on conifers growing in the field can
increase the number of visible axillary budsref and as a result this study concludes that “conifer leaf axils might not be as blank or empty, at least in recently initiated shoots, as they might appear to be. Cells in the leaf axils, while not forming buds, can maintain a meristematic potential and if they lose meristematic appearance, they may be
preferentially able to dedifferentiate into bud forming structures.”ref

In ginkosref, axillary buds are present in the nodes of long shoots only, and these trees can backbud – below is an example of a ginkgo at the Seattle Japanese Garden – you can see new leaves sprouting from the bark of a well-established tree (from the longest long-shoot of all – the trunk).

I’ve also spotted this tree around the corner from my house in London – it was quite tall with all the foliage at the top of the tree – when I saw it cut back so severely I was sure it would die. There were only the tiniest of shoots here are there on the trunk. But in a matter of a few weeks it grew back profusely, which makes me think it must be a Thuja of some kind – perhaps Thuja occidentalis ‘Golden Smaragd’.

Finally another lovely example of conifer resprouting are the amazing dai sugi in Japan – these are Cryptomeria japonica which are cultivated for forestry purposes. The tree is encouraged into a multi-stem form with horizontal branches, which sprout new vertical stems. These are harvested over and over, and new stems grow. In this way the same tree has been used for forestry for hundreds of years without killing the tree. The technique is explained in Jake Hobson’s book Niwaki, which also includes a brilliant photo of bonsai dai sugi, which I think look bizarre but amazing. I have several Cryptomeria japonica at my allotment in the hope of creating something similar (although realistically the ones in this image are probably air-layered).

https://twitter.com/wabisabi_teien/status/1038034988841627648?lang=zh-Hant

What is a Tree?

Roland Ennos gives an excellent explanation of the evolution of trees and their differences in his book Trees: A complete guide to their biology and structure and most of the below comes from Chapter 1 of his book. But the simple version comes from Colin Tudge: “‘Tree’ is not a distinct category, like ‘dog’ or ‘horse’. It is just a way of being a plant.”

A botanical definition for ‘tree’ is ‘any plant with a self-supporting, perennial (living for more than one year) woody stem’. The main way that trees become self-supporting is through a process known as secondary growth, where a layer of stem cells around the outside of the stem divides to produce xylem tissue on the inside and phloem tissue on the outside. The xylem transports water but also gives structural strength to the tree, and this annual growth is responsible for trunk thickening.

From a biological taxonomy point of view, the tree form exists in several classes and families within the Tracheophyta phyllum, which is the phyllum within the Plantae kingdom containing all vascular plants (that is, plants with conducting vessels for water and phloem). You can read more about this in: The kingdom Plantae and where trees fit in.

The angiosperms (flowering plants), as the latest evolving and most successful class have some differences from other trees which is relevant to bonsai-ists. These differences include:

  • Angiosperms have specialised water transport vessels in their xylem which allows them to move more water more quickly than non-angiosperms (leaving these species more subject to embolisms and less drought-proof).
  • Their leaves are a lot more variable in terms of size and shape, and are often deciduous (there are a few deciduous species in non-angiosperm families but these are a minority – including Ginkgo, Dawn redwood and Swamp cypress). Deciduousness means that these trees do not need to create frostproof leaves, so they can take different, more productive forms (such as large leaves with high photosynthetic capability).
  • Even so, leaves of evergreeen angiosperms are still more productive than those of their counterparts in other families – possibly because their more efficient water transport allows for more transpiration and so larger leaves with more stomata (hence more photosynthesis).ref
  • Angiosperms produce ‘tension wood’ in response to gravity – if they detect a displaced stem they react by creating wood on the upper side of the stem to pull it back up again. Conifers do the opposite – they produce compression wood on the underside of a stem to change its position.ref

The next question you might want to ask is what is a bonsai?